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SINGULAR HOMOLOGY ON AN UNTRIANGULATED
MANIFOLD

MARSTON MORSE & STEWART S. CAIRNS

1. Objectives

This paper is concerned with singular homology over Z on a compact, con-
nected differentiable manifold M, of class C~. We suppose that there is given
on M, a polar nondegenerate' function f of class C», and that n > 1.

This paper continues a program with two objectives. The first objective is
to relate the existence and characteristics of critical points of f to invariants
(the Betti numbers and torsion coefficients of the different dimensions) of the
singular homology groups of M, sufficient to determine these homology group

“up to an isomorphism. The second objective is to accomplish this without any
global triangulation of M,. This is a prelude to a similar study of topological
manifolds which admit no triangulation.

The cogency of the second objective became evident in Morse’s study of
global variational analysis. The function spaces thereby arising are in general
not even locally compact. To make the global theory depend on triangulations
imposes difficulties which obscure the relations between the critical elements
and the topology. This first historical reason was reinforced by the conviction
that topological manifolds which admit topologically ND functions (see [3]) are
more general than those which admit triangulations (see [1]). This last convic-
tion is being further substantiated by current research of R. C, Kirby and L. C.
Siebenmann. See [2].

The present paper continues the development in [5] of singular homology
over Z on M,. In [5] the following condition was imposed on f.

Condition C, on f. Under condition C,, f has different values a at different
critical points. '

The following theorem was proved in [5]. Its terms are there defined.

Theorem 0.1 of [5]. Under Condition C, on f there exists an inductive
group-theoretic mechanism by virtue of which relative numerical invariants,
associated with the critical points of f on each subset
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*We abbreviate the word nondegenerate by ND. Polar ND functions are shown to
exist on M, in [4].
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(1.1 fo= (xelM, {0 < ¢

of the carrier \M,| of M,, determine, up to an isomorphisin, the singular
homology groups over Z of the subspace f, of M,,.

Paper [6] is concerned with the “orientability” of M,. A current definition
affirms that M, is orientable if and only if its n-th Betti number is 1. We term
such orientability “homological,” and introduce what we term geometric orien-
tability, defining such orientability without reference to homology or triangula-
tion of M,. A fundamental theorem of {6] follows.

Corollary 9.1 of [6]. The manifold M, is geometrically orientable if and
only if its n-th Betti number is 1.

In treating certain aspects of singular homology theory over Z the Condition
C, on f is too restrictive. In this paper we shall replace Condition C, by the
following condition.

Condition C, on f. Under Condition C,, critical points of f with different in-
dices shall have different critical values. Critical points with the same index
may or may not have the same critical values.

If Condition C, is satisfied, Condition C, is satisfied. We shall review some
of the theorems of {5] established under Condition C, on f, and give these theo-
rems new forms under Condition C, on f. In § 6 we shall return to a study of
orientability and prove the following without making use of any triangulation
of M,.

Theorem 1.0. The torsion subgroup 9 ,_ (M, ) of H,_(M,|, Z) is trivial
or of order 2 according as M, is geometrically orientable or not.

We prepare for the topological analysis of § 2 by Lemma 1.1 below. “Coset-
contracting” isomorphisms are characterized in Theorem 1.2 of {5].

Coset-contracting isomorphisms. Extensive use of such isomorphisms will
be made in § 2. We shall here prove a useful lemma.

Let y be a Hausdorff space and A a subspace of y, possibly empty. If 4 %y
we term (y, A) an admissible set pair, and A a modulus of y. Let ¢ > 0 be an
integer. Let (y, A) and (x’, A”) be admissible set pairs with (¥, 4) “preceding”
(x’, A", in the sense that y Dy’ and 4 D A’. A coset-contracting isomorphism

(1.2) H . A, 2) T Hfy . 4, Z)

is defined in Theorem 1.2 of {5]. The arrow — above = indicates that a rela-
tive homology class U of the group Z,(x, 4, Z) of singular g-cycles on y mod A
over Z corresponds under the isomorphism (1.2) to a relative homology class
U’ of Z,(y', A’, Z), such that U D U’. The conditions (a) and (b) of Theorem
1.2 of [S] are necessary and sufficient that (1.2) hold. .

To formulate Lemma 1.1 let there be given admissible set pairs

(1.3) A, G.A). .47

with order of “precedence” the order of writing in (1.3).



SINGULAR HOMOLOGY 3

Lemma 1.1. Sufficient conditions that (1.2) hold are that
(1.4) H(,A,Z) 2 H(', A", Z) ,
(1.5) H(y/ A, Z) 2 H (", A", Z) .

The reader can show that the coset-contracting isomorphisms (1.4) and (1.5)
imply that conditions (a) and (b) of Theorem 1.2 of [5] are satisfied and hence
that (1.2) holds.

2. f-Saddles

Let a be a critical value of f and f, the corresponding closed sublevel set
defined in (1.1). Let pt, p%, - - -, pZ= be the critical points at the f-level a. By
Condition C, on f these points have the same index k. We say that a then has
the index k. If a is the minimum or maximum of f on {M,,|, then r, = 1. We
introduce the subspace

2.1) fp=fo—pL— --- —ple (cf. (2.4) of [5]

of f,. When r, = 1 we may denote p. by p, and f; by f, as in [S]. The
principal use of f; is as a modulus associated with f, in the set pair (f,, f;) when
0 <k<n.
The sets Ni. Suppose that 0 < (index a) < n. With the critical points p,
-+, Dh¢ We associate open subsets

2.2) Ni, .- .,Nr=

of f, which contain the respective points p, - - - ; p7* and have disjoint closures.
For each i we set Ni = Ni — pé.

Definition 2.1. f-saddles. Set (index a) = k and suppose that 0 < k < n.
A C=-manifold L} which is the C~-diffeomorph of an open euclidean k-ball B
of radius e and which is C*-embedded in M, so as to meet pi, will be termed
an f-saddle L% at p; if the following is true.

() The point pi is a ND critical point of f| L. of index k;

(i) N% D |[Li|, where |Li| = |Li| — pi.

One should compare Definition 36.2 of [7] with this definition.

Subsaddles of L:. For fixed a and i an “f-saddle £ at p%” such that
|Ly| D[ £%| will be called a subsaddle of Li. If £} is a subsaddle of L: then for
each integer g0 there exists a coset-contracting isomorphism

(2.3) H(Ly} | Lyl 2) 2 H( 21, | 24, 2) -
The Excision Theorem 1.3 of [3] implies (2.3) on setting
(2.4) =L, A=|Li|, A*=|Li— |2}l .
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Lemma 2.1, which follows, is an extension of (2.6) of [5]. In Lemma 2.1
the right member of (2.5) is the “external direct sum” of the groups indexed
by i. The range of i is 1,2, .- -, r,.

Lemma 2.1. [If (index a) = k and if 0 <k < n, there exists for each integer
g > 0 an isomorphism

@.5) H,(fo 1z 2) = @ HALiL L} 2) -
The relation (2.5) is a consequence of the coset-contracting isomorphism,
(2.6) H(fa> 1z, 2) 2 H(U N, U N3, 2)

and of r, coset-contracting isomorphisms,
(2~7) Hq(Nfz,’Ni, Z)ZH(]([L%LILH’ Z) (l = 17 "'3ra)
now to be established.

Proof of (2.6). The Excision Theorem 1.3 of [5] implies (2.6) on setting
2.8) y=fa, A=f;, A*=f,— JN:.

Proof of (2.7). We shall make use of Lemma 1.1 to prove (2.7). The anal-
'ysis on page 330 of [7] shows? that for fixed a and  there exists an open neigh-
borhood? Y* of pi with f, N Y! C N and a subsaddle? %% of L% so small that
the following is true:

Proposition 2.1. There exists a deformation retracting f, N Y* onto | Z3|

and f; N Y?, onto | Zi|.
For fixed i Proposition 2.1 is similar to Proposmon 36.1 of [7] and is proved
similariy. It follows as in the proof of (36.1) of [7] that

(2.9) H,(f, N Y4 f; N Y4, 2) 2 H(ZL, 145, Z) .

Since f, N Y¢ C N¢ the Excision Theorem 1.3 of [5] implies that
(2.10) H, (N, N, Z) 2 H(fa N YLf; N YL 2Z) .

The isomorphism (2.10) followed by the isomorphism (2.9) implies that
2.11) H,WN:, N, Z) 2 H( 24,1 24, 2)

Relations (2.11) and (2.3) yield (2.7) in accord with Lemma 1.1.

2 In [71, one is concerned with one critical point p, and one neighborhood Y of p, in
fa, and Ly is a subsaddle which could have been denoted by #.
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The proof of Lemma 2.1 concluded. The fact that the sets N5, - - ., N7a
have disjoint closures implies that the right member of (2.6) is isomorphic to
the direct sum,

(2.12) DHWL,NL Z) . (cf. (2.3) in [8])
=1
With this understood (2.6) and (2.7) imply (2.5). Thus Lemma 2.1 is true.

3. Universal k-caps

Definition 3.0. Let pi,i=1,2,..-.r,, be the set of critical points of
index k at a level a of f, with 0 < k < n. A singular k-cell ¢* which is simply-
carried, in the sense of Definition 26.2b of [7], by an f-saddle L¢ of p? with p?
interior to j¢*| will be denoted by £%* and termed a universal k-cap at pi.

The k-cap x%¢ is termed “universal” because it is a k-cap of p, over each
field 2", as the Carrier Theorem 36.2 of [7] implies. See Definition 29.1 of [7]
of k-caps over 1.

We supplement Definition 3.0 by the convention that when a is the absolute
minimum of f on |M,| the O-cell carried by the critical point p, at the level a is
a universal 0-cap.

Given a universal k-cap #%'* we shall set

(3.1) [kE?] — pi = |57

and verify the following theorem.
Theorem 3.1. If (index a) = k and 0 <k < n then, for each integer g >0,
there exists an isomorphism :

(3.2 Hfor 12, 2) = @ Holln¥), 854, 2) .
Let L be an f-saddle at pt such that -

(3.3) |kt < |LE) G=1,---,r).

The Excision Theorem then implies that

(3.4) H,(Li|, | L], 2) 2 Hy(ek'), |75, 2)

so that (3.2) follows from (2.5).

Corollary 3.1. Under the hypotheses of Theorem 3.1 the group H/(f,, 3,
Z) is finitely generated and free. When q 5 k this group is trivial and when
q = k has the set

(3.5) Kt L. T

ki

of universal k-caps as a prebase.
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The corollary is a consequence of (3.2) and a lemma concerning the i-th sum-
mand in the right member of (3.2). This lemma is derived from Theorem 2.2
of [5] with &% replacing «% therein. The lemma follows.

Lemma 3.0. If %% is a universal k-cap of p: with 0-< k < n, then for
each g > 0 the group

(3.6) H (kb |£5, 2Z)

is a finitely generated, free, abelian group whose dimension is 5 and for which
k5% is a prebase when g = k.

Corollary 3.2. If under the hypotheses of Theorem 3.1 and Corollary 3.1,
y* and z* are universal k-caps of p., then® for some choice of e as + 1

3.7 V& ~ ezk (on f, mod f;) .

a-Level (n — 1)-caps. When a is a critical value of index n — 1 there are
special (n — 1)-caps of each critical point p{ whose carriers are simply-carried
(n — I)-cells on the level set f+. To describe these cells we shall recall the form
taken by Theorem 3.1 of [6] when & = n — 1. To that end let D, be an open
origin-centered n-ball of radius ¢ in a euclidean space of rectangular coordi-
nates u,, - -+, 4,. Let

(3.8) (I,: D, XeaM, (.0 = pl)

be a presentation of a neighborhood X of pi on M,. Theorem 3.1 of [6] per-
mits us to affirm the following.

Lemma 3.1. Corresponding to a sufficiently small positive constant ¢ and
to the i-th critical point pt, of index n — | on f¢, the Riemaniann metric on M,
may be supposed such that there exist isometric mappings I: of form (3.8) of
D, onto respective neighborhoods X' of p: on M, such that

3.9 ) —a= —uj— - — v, + u, (ueD,) .

We can and will suppose that ¢ is so small that the closures of the neighbor-
hoods X% are disjoint
The cone A, .. The cone

(310) .’171_1 = {uEEnju‘-;p, = ui + - + u?t—l

has subsets A;_, and A;_, on which u, > 0 and 1, < O respectively. The sub-
sets A;_, and /,_, intersect only in the origin. Set

(3.11) (- ND)Y=T.,, [, ND)=7%.

Definition 3.1. Opposite (n — 1)-faces of f* at p.. Given a critical point

3 Unless otherwise specifisd, chains, cycles and homologies shall be over Z in this paper.
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pi of index n — 1, the topological (n — 1)-balls 97 and T? on f* will be called
opposite (n — 1)-faces of f* at pi. These faces are carried by f¢ and intersect
n p;.

The “universal k-caps” previously defined have been simply-carried by “f-
saddles”. This made a proof of the “Saddle Theorem” (Corollary 36.1 of [7])
possible. We have need of (n — 1)-caps not simply-carried by f-saddles but
rather by singular level sets f*. Each such k-cap will be associated with a
critical point pi of index n — 1 on f* and defined as follows.

Definition 3.2. a-Level (n — 1)-caps. Given “opposite (n — 1)-faces” T
and 7% of f* at a critical point pZ, a singular (n — 1)-cell ¢! which is simply-
carried by T or J7¢ with pt on the interior of |¢”~!| will be termed an a-level
(n — 1)-cap of p¢ and will be denoted by K=~"* or 2=~ 1¢ respectively.

The following lemma is essential. ‘

Lemma 3.2. Let pi be the i-th critical point of index n — 1 at the f-level a.
With p:, suppose that there is associated a universal (n — 1)-cap £»~"* together
with a-level (n — 1)-caps K*~%* and 22~ on opposite faces of f* at p%,. Then
for suitable choices of e and ¢ as + 1

(3.12) Ki bt ~ exp it , A ThE o~ ekl hE (on f,, mod f, — pi) .

We shall establish this lemma with the aid of two deformations d and D.

The deformation d. In the n-space E, of coordinates u,, - - -, u, of the do-
main D, of the presentation (3.8), let E,_, be the coordinate (n — 1)-plane on
which u, = 0 and let = be the orthogonal projection of E, onto E,_,. Under =
the point 4 = (u,, - - -, u,) € E, goes into the point z(v) = (u,, -+ -, u,_ ) e E,_,.
A deformation

(3.13) u,t) - du,9): E, x [0,11 - E,
retracting E, onto E,_, (cf. Def. 23.1 of [7]) is defined by setting
d(u5 t) = (ula Tt s un—l’(l - t)un) (0 S t S 1)

for each ue E,. The partial mapping u — d(u, ) is denoted by d,. Let B, be
the origin-centered (n — 1)-ball in E,_; of radius r. The images under d, of
both A;_, N D, and A%_, N D, is B, with p = ¢/+/ 2. Under d the sets

AN D, and A;_, N D, are isotopically deformed onto B, holding the origin
fast,

The deformation D. The presentations (3.8) characterized in Lemma 3.1
have been denoted by I¢.

The image of the origin under I3 is p.. The range of I is X%. Set X = TLCJL Xt
i=1

A deformation

(3.14) (x,) > D(x,0: X x[0,1] - X
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retracting X* onto I*(B,) for each i is defined by setting
(315) D(x7 t) - Ifz(d(u’ t)) (l = 1: M) ra,)

for 0 < ¢ < 1 and for each pair (x, u) such that u e D, and x = I’ (u). Note that
the set 1% (B,) is the carrier of an f-saddle L _, at pt.

The (n — D-cell t* = K»~bt, Under D, |#*| is deformed on X% 1 f, onto
D,(l#*)). The mapping D, induces a chain transformation D, (cf. Def. 26.5 of [7])
which maps each singular cell on X7 into a singular cell on D\ (X%). In par-
ticular, D,(¢?) is a singular (n — 1)-cell y2~*, simply-carried on |L{_,| with pi
on the interior of |y7~!|. Hence y?~!is a universal (n — 1)-cap at p?. It follows
from Corollary 3.2 that for some choice of e as + 1

(3.16) YiTh~ eyt (on f, mod (f, — p)) .

D|(X?: x [0, 1]) is a deformation retracting X% onto D,(X?) and since |#*| C X?,
it follows from Theorem 1.4 of [5] that fori = 1, .- -, r,,

(3.17) t ~ D) =y (onf, mod (fy — PL) .

The first homology in (3.12) follows from (3.16) and (3.17). The second
homology in (3.12) follows similarly. This completes the proof of Lemma 3.2.

4. Lemmas on singular homology

Let M be the maximum of f on |M,,| and p, be the unique critical point of
index n at the f-level M. The n-caps associated with p, play a special role in
the study of the orientability of M,,, as the proof of Theorem 9.1 of [6] shows.
We shall construct a universal n-cap «% associated with p,.

The level manifold f*. To that end let 8 be an ordinary value of f such that
the open interval (8, M) contains no critical values of f. The set

4.1 fromy = {xe[M,]| B < x < M}

is a topological n-disc 4, on [M, |, bounded on [M,,| by the topological (n — -
sphere f#. It follows that there is a universal n-cap % defined by an equivalence
class of homeomorphic maps onto 4, of vertex-ordered n-simplices. (See p. 371
of [7] or Definition 2.2 of [5].) We set

4.2) dny = yr-!

and note that y3~' is carried by f%.
We shall verify the following lemma.
Lemma 4.1. The (n — 1)-cycle y3~' of (4.2) is an (n — 1) st IHP® of f°.

¢ JHP abbreviates the term ‘‘integral homology prebase”. An IHP of f5 by definition
is a prebase over Z of a Betti subgroup of H, i«(f$, Z).
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Proof. Let z*~! be an arbitrary (n — 1)-cycle on f?. There exists an integral
n-chain z* on |£%| = 4, such that z*~' = 3z". The chain z” is thus an n-cycle
on 4, mod 4 where 4, = 4, — py. It follows from Lemma 3.0, with k = n,
that for some integer p

4.3) ¢~ pKy (on 4, mod 4,) .
The application of 2 to the members of (4.3) gives the homology
(4.4) '~ ok (on 4,) .

Since there exists an f-deformation retracting zin onto f#, (4.2) and (4.4) imply
that

2t~ pypmt (on )

thereby establishing the lemma.

We shall make use of the following lemma.

Lemma 4.2. Let y be a Hausdorff space and r a positive integer such that
H.(yx, 2) is torsion-free. A nontrivial integral r-cycle z7 on y such that 27 ~ 0
over Q on y is such that 27 ~ 0 on y over Z.

By hypothesis there exists a rational chain ¢7*! on y such that z7 = gc7*'.
For a suitably chosen positive integer m, mc™*! will be an integral chain wm*?,
so that mz" = aw”*! and hence mz” ~ 0 over Z on y. It follows that z7 ~ 0 on
x- Otherwise, z~ would be in the torsion subgroup of H,(y, Z), contrary to
hypothesis.

Thus Lemma 4.2 is true.

Lemma 4.3. If ¢ is an ordinary value of f such that the critical points on f,
have indices less than some positive integer p, then the following is true:

(i) The homology group H ,(f., Z) is trivial.

(ii) The homology group H,_,(f., Z) is torsion free.

We shall prove this lemma by means of theorems in [5]. Since the function
f was subject to the Condition C, in [5] we shall here suppose that Condition
C, is satisfied. Were Condition C, not satisfied a slight alteration of f near the
critical points of f can be made so that Condition C, is satisfied. This alteration
of f can be made in accord with Lemma 22.4 of [7] in such a manner that the
set f. is unaltered as well as the critical points on f, and their indices.

Notation. In accord with the notation in [5], for each critical value a of f
and integer g > O we shall set

(45) HZ = Hq(fa., Z) >
and when (index a) is positive set

(4.6) He = H(fs, 2) .
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Let 7°¢ and J¢ denote the torsion subgroups of H% and H¢ respectively.
With f altered as above, the critical values of f less than ¢ form a sequence,

@.7 a <a <a <--<a,<c.
We shall examine the sequence
(4-8q) Hf;"; Hgla Hgl; ngy ng; R HZ"% H(ql"‘; Hq(fw Z)

- of homology groups.

Proof of (i). 'To establish (i) we show inductively that the homology groups
of the sequence (4.8y) are trivial.

This is true of H%, since ¢ > 0. Let s have the range 1,2, - .., m — 1. If
Hffs-f is trivial then H 2s is trivial, since there exists an “‘f-deformation™ retract-
ing f,, onto f,, .. Similarly, if H%~ is trivial H,(f., Z) is trivial since there
exists an f-deformation retracting f, onto f, . Moreover,

(4.9 His =~ H»  (s=1,---,m).

Proof of (4.9). 'The Betti number j,( f o)) = B.(f.,) since (index a,) <z (see
(7.11) of [51), and the torsion group 5‘;}* =~ 7 % by Theorem 7.3(i) of [5].

Lemma 4.3() follows.

Proof of (ii). To establish (ii) we show inductively that the groups in the

sequence 7 3%; J 2y, T 8y ey T o, Ty T, (e, Z) are trivial.
It is clear that 7722, is trivial. Let s be on the range 1, - - -, m — 1. If 7 %572

is trivial, then 9~ s, is trivial, since there exists an f-deformation retracting 7 as
- onto f,,_ . If % is trivial 7 ,_,(f., Z) is trivial for similar reasons. For s on
the range 1, - - -, m, 9‘;‘}11 ~ J %, by virtue of Theorem 7.3(i) of [5], since
(index ap) < p — 1.

Lemma 4.3(ii) follows.

Lemma 4.3 implies following.

Lemma 4.4. Let a be a critical value of f of positive index p such that crit-
ical points on f; have indices less than p, then the following is true:

(1) The homology group H (f;, Z) is trivial.

(ii) The torsion group of H,_\(f;, Z) is trivial.

Let ¢ be an ordinary value of f such that (¢, a) is an interval of ordinary
values of f. For this ¢ Lemma 4.3 is true as stated and implies Lemma 4.4.

A corollary on orientability of M,. In [6] we have proved the following.

Theorem 4.1. The manifold M, is geometrically orientable or nonorientable
according as the connectivity R,(M,|,0) = 1 or 0.

Notation for Corollary 4.1. Recall that a critical point p, of positive index

5 See Cor. 23.1 of [7]. Retracting deformations whose ‘“irajectories”’ are ortho-f-arcs
will be called f-deformations.
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k, unique at an f-level g, is said to be of linking type over a field 2" if for some
k-cap u* associated with p,, du* ~ 0 on foover o, (CE. [7, p. 259].) It was
shown in [7] that if p, is of linking type, then for each k-cap v* associated
with p,, 9v* ~ 0 on f, over ¥ .

We state a corollary of Theorem 4.1.

Corollary 4.1. The manifold M, is geometrically orientable or nonorient-
able according as the critical point py is or is not of linking type over Q.

Proof. As in Lemma 4.1 let 8 be an ordinary value of f such that the in-
terval (8, M) contains no critical value of f. The critical values a of f less than
M have indices less than n. It follows from Lemma 4.3(i) that the Betti num-
ber 8,(f,) vanishes. By a classical theorem the ponnectivity R,(f:, Q) = B.(fp)
so that R,(f;, Q) also vanishes. Moreover, R,(f, @) = O since there exists an
f-deformation retracting f , onto f,. Since f, = |M,,] it follows from Theorem
29.2 of [7] that R,(M,, Q) = 1 or 0 according as the critical point p, is or is
not of linking type.

Corollary 4.1 now follows Theorem 4.1.

In (4.2) we have introduced a universal n-cap % with algebraic boundary
y3~'. The critical point py is of linking type if and only if y~' ~ 0 on £ over
Q. For future use we formulate a consequence of this fact and of Corollary 4.1.

Corollary 4.2. The manifold M, is geometrically orientable or nonorient-
able according as the integral cycle y;~' is or is not rationally bounding on fu

5. The homology class of y;~' on f o

In this section we suppose that M, in nonorientable.

The (n — 1)-cycle y2~' was introduced in (4.2). Its carrier is the topological
(n — 1)-sphere f%.

Subdivisions of y;~'. Let y77' denote the u-th “barycentric subdivision” of
y3~'. (See p. 217 of [7].) The cycle y;3! has a “reduced form,”

5.0 Vit =eor " + - 4 euon!

where the cells 677! of this “reduced form” are simply-carried by f*, where
e; = +£1 and for i = j, 677" N |¢7~"] includes no open subset of f*. We seck
an integral linear combination u"~! of elements of a prebase of H,_,(f,, Z)
such that u*~' ~ y?=! on f,, or equivalently on £ . Since M, is assumed non-
orientable, y;~' is rationally nonbounding on f, in accord with Corollary 4.2.

How large the “index g of subdivision” of y3~!, should be, will presently be
indicated.

A condition 2 on f. Because of the hypothesis of §5 that M, is non-
orientable, there must be at least one critical value of f of index n — 1. Other-
wise, the group H,_,(f,, Z) would be trivial by Lemma 4.3 (i), contrary to
Corollary 4.2. Under the condition 2 on f, all critical points of f of index n — 1
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shall be at one f-level, a level w greater than each critical value of f with a
smaller index. The reasoning of § 4 of {6] shows that this condition is either
satisfied by f or will be satisfied after a suitable modification of f that leaves the
set f, invariant.

Notation. Under condition £ on f let

(5-1) pin'"ap: (r>0)
be the critical points of f of index n — 1 at the f-level w and let
(52) (un R} ur) = (ICZ_I’Is Y ’52_1’7‘)

be a set of universal (k — 1)-caps associated with the respective critical points
(5.1) and, as in § 2, carried in open subsets

(5.3) N, -, N,

@

of f, with disjoint closures.
A retracting deformation 5. The subspace f, of |M,| admits an f-deforma-
tion

(5.4) (x,) = 8(x,0: f, x [0,1] = f,

retracting f, onto f,. Under & each point x € f, — f, descends on an ortho-f-arc
to a limiting end point on f*. The terminal mapping 4, of § maps f# biuniquely

onto f*, except that each critical point pt, i = 1, .. ., r of f on f* has two ante-
cedents, say
(5.5) g4, 4,

on f2. The 1-bowl B? ascends from p: to meet f# in the two points (5.5).

A condition 2, on # and on f. We can suppose that the “index u of sub-
division” of y3~'is so large that as i ranges over the set 1, - - -, r, no two of the
2r points (5.5) are carried by the same (n — 1)-cell of y37!. We suppose fur-
ther that f is modified, if necessary, on f, , so that the points (5.5) are in the
interiors of (n — 1)-cells of y;7' (are represented in (5.0)). This will occur after
a suitable modification of the 1-bowls B? ascending from the points p. Let

(5.6) pht 2~

by the (n — 1)-cells in the reduced form (5.0) of y3;! whose carriers contain
the points g} and g}, respectively.

The terminal mapping 5, of 5. According to Definition 26.5 of [3], the
terminal mapping &, of & induces a chain transformation 3, of chains y™ on f;, ;
into chains §,y™ on f*. According to Theorem 1.4 of [5], and Corollary 27.3
of [7],
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(5.7 Yt~ ayi =2 (on fr )

introducing the (n — 1)-cycle z*~'. It is clear that |z"~!| = f*. For i on the
range 1, ..., r, set

(5.8 Srp i =g, Gephi=pt,

If the “index g of subdivision” of y3~' is sufficiently large (as we suppose the
case) 7! and (P! are simply-carried by “opposite faces” of f at p!, and are
“w-level (n — 1)-caps” of pt. (Cf. Def. 3.2.) If for i on the range 1, - - -, 7, e,
and ¢; have suitable values + 1 one sees that

(5.9) = e 4 L 4 e

where the repeated index i indicates summation of the corresponding terms
over the range 1, - - -,r of i, and ¢* ' is an (n — 1)-chain on f* whose carrier
meets the interior of none of the carriers |77 and {771,

In (5.9) the chain ¢*'is on f;, as defined in (2.1). Taking account of this
fact and of Lemma 3.2 we are led to the following lemma.

Lemma 5.1. Under the hypothesis that M, is nonorientable the critical
points pt,i =1, ...,r, of f of index n — 1, given in (5.1), can be reordered,
together with their respective universal caps (5.2), so that the following is true.

For a suitable positive integer v < r and proper choices of integers p, as £1,

(5.100  yp7' ~ 20427 4 - 4 2p477%"  (on fy modf]) .

The homology (5.10) is an immediate consequence of (5.9), (5.7) and
Lemma 3.2 on “w-level (n — 1)-caps” (such as 72! and {?~") provided that
one excludes the possibility that all the coefficients 2p; in (5.10) are 0. That is,
one must exclude the homology

(5.11) 5t ~0 (on f, mod f;)
or equivalently the homology
(5.12) yil~ cn? (on f;) ,

where ¢*~! is an (n — 1)-cycle on f;. However, Lemma 4.4 (i) implies that an
(n — 1)-cycle c*~! which is on f; is bounding on f;. If then (5.12) held,
y2~' ~ 0 on f,, contrary to Corollary 4.2.

We infer the truth of Lemma 5.1.

In the proof of Theorem 5.1 which follows we shall make use of a lemma in
abelian group theory formulated as Lemma 3.1 in [8].

Introduction to Lemma 5.2. Let A4 be an arbitrary finitely generated
abelian group. If J is the torsion subgroup of A it is well-known that there
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exists a free subgroup # of 4 (termed complementary to 7 ) such that
(5.13) A=BDT .

We term # a Betti subgroup of A. The group # has a finite base u), - - -, u,,,
possibly empty. Any unimodular transform of a base of & is again a base of
Z. In formulating Lemma 5.2 we shall write x = y mod & whenever x and y
are elements in 4 such that x — y isin 9.

Lemma 5.2. Corresponding to a prescribed element w ¢ A of infinite order
there exists a unique positive integer s such that

(5.14) w = su mod .7

for some element u in a base of a Betti subgroup of A.
A proof of this lemma in the form of Lemma 3.1 of (8] is given in [8].
We conclude this section with the following theorem.
Theorem 5.1. When M,, is nonorientable the cycle y3~! introduced in (4.2)
satisfies a homology

(5.15) yitt~ 22" (on fy)

where A"~ is an element in a prebase of a Betti subgroup of H,_(fy, Z).
Proof. Turning to (5.10) we set

(5.16) PN e ot = !

obtaining thereby a chain ¢*-! on f,. According to (5.10) and (5.16)

5.17) vitt=2¢rt 4 Gep 4 et

where ¢} is a chain on f, and ¢*~* a chain on f;. From (5.17) we infer that
(5.18) 26cr7t = —acr!

so that ¢~ is rationally bounding on f;. It follows from Lemma 4.4 (ii)® that
H,_.(f;,Z) is torsion-free and then from Lemma 4.2 that c»~' is integrally
bounding on f;. That is, dc?~* = gw»~*, where w*~'is a chainon f;. We now
set

(519) At = CZ—-I — wrt

so that A*7' is an (n — 1)-cycle on f,, and verify statements (i), (ii), (iii) below.
(i) The cycle A*~! satisfies the homology (5.15).
Proof of (i). It follows from (5.17) and (5.19) that the chain

5 With « =w and g =n — | in Lemma 4.4.
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(5.20) yiTh— 227 — gep = 227! (introducing z*~")

is an (n — 1)-cycle on fo, and from Lemma 4.4 (i)® that z*~! ~ O on f;, so
that y7=' ~ 22*7!' on f,. Thus statement (i) is true.
We note that 2*7, as defined by (5.9), satisfies the homology

(5.21) AN~ o™+ e+ pwl™ (onf, mod f7) .

(ii)" The cycle A*7' is an element in a prebase of a Beiti subgroup of
Hy\(f o 2). _ _

The cycle 2*~? < 0 on f,, since y2~' £ 0 on f, by Corollary 4.2 and.
(5.15) holds. Hence 1*~! » 0 on f,. To establish (ii) it is sufficient to establish
the following.

(iili) The cycle A»~' is an element in a prebase of a Betti subgroup of
H,_(f., Z).

To establish (iii) we shall apply Lemma 5.2 to the abelian group A4 =
H,_.(f,, Z), taking w of Lemma 5.2 as the homology class on f, of 27'. The
group H, (f, Z) is torsion free by Lemma 4.4 (ii). Hence the isomorph
H, (f.,,Z)of H, (fy,Z) is torsion-free. In applying Lemma 5.2 to 4 =
H,_(f., Z) we can accordingly suppose that 7 = 0. According to Lemma 5.2
there then exists a positive integer s such that

(5.22) Al gpnl (on f,)

for some element v*~! in a prebase of H,_,(f,, Z). Hence to prove (iii) it is
sufficient to show that s = 1 in (5.22).
Proof that s = 1. We shall apply Corollary 3.1 with a = @ and r, = r

therein. Corollary 3.1 implies that for suitable integers »,, - - -, 1,
(5.23) vt~ S b (on f, mod f) .
i=1

From (5.23), (5.22) and (5.21) we infer that

r

(5.24) ZD] 0270 ~ 5 37 pen e (on f,, mod f7) .
i=1

Since £7~%1, .. -, 2757 is a prebase of H, _(f..f,, Z) by Corollary 3.1, (5.24)
is possible only if for i = 1, - - ., r the coefficients of £?~!? are the same in the
two members of the homology (5.24). In particular, s must be 1.

Thus (i) is true and hence (ii). Theorem 5.1 follows from (i) and (ii).

6. Proof of Theorem 1.0

Our proof of Theorem 1.0 without use of a triangulation of |M,, | depends on
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the concept of the “free index” s of an element w in an arbitrary finitely gen-
erated abelian group A. The group A is a direct sum

(6.1 A=BDT

of its torsion group 4 and a free subgroup # “complementary” to .7 in A.
The following definition is given in § 3 of [8]. :

Definition 6.1. The free index s of we A. If w e 7 the free index of w
shall be 0. If w ¢ 7 the free index of w shall be the integer s affirmed to exist
in Lemma 5.2,

We shall apply this definition. To that end let p, be a critical point of f
unique among critical points of f at the f-level a. Suppose that the index & of
P is positive. Let £% be a universal k-cap at p,, and let w%~" be the homology
class of ax% on f,. We note that wi='e H,_,(f, Z). If % is replaced by any
other universal k-cap of p,, the homology class of 3% on f, remains unchanged
or is multiplied by —1. (See Theorem 2.3 of [5].) Set

(6.2) A=H(fo,2) .

Definifion 6.2. The free index s of p,. Under the conditions of the pre-
ceding paragraph the free index s* of the critical point p, is taken as the free
index of +wk-1.

The value of 5% is independent of the choice of «* as a universal k-cap of p,
since the free index of wt~! equals the free index of —w%~'. (See definition of
5% in § 4 of [5].)

The critical point p, of Definition 6.2 is of “linking” or “nonlinking” type
over the field @ of rational numbers in the sense of Definition 29.1 [7]. We
shall verify the following lemma.

Lemma 6.1. The critical point p, of Definition 6.2 is of linking or non-
linking type over Q according as the free index s* of p, is zero or positive,

In terms of the connectivities R, (f,) and R( fo) over Q, set

(6.3) 4R, = R(fa) — R(f)  (@=0,1,--).
According to Theorem 29.2 of [7], when p, has the index k, 4R, =1 or
AR, _, = —1 according as p, is of linking or nonlinking type over @. In terms

of Betti numbers 8,(f.) and 3,(f,) set
48, = Bfa) — Bfe)  (@=0,1,--).

It is well-known that Betti numbers and connectivities over @, indexed by the
same dimension, are equal when finite. Thus 48, = 4R,. According to Theo-
rem 7.2 of [5], 48, = 1 or 48;_, = =1 according as the free index s* of p,
is zero positive.

Lemma 6.1 follows.
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Proof of Theorem 1.0. The proof of this theorem will be based on Propo-
sition 7.1 of [5]. We state Proposition 7.1 as follows.

Theorem 6.1. Let p, be a critical point of positive index k, with p, unique
among critical points at the f-level a. When H?_, is torsion-free, H_, is torsion-
free unless s > 1. If s® > 1, H?_, has a unique torsion coefficient s°.

Theorem 1.0 breaks down into two theorems, Theorem 1.0a and Theorem
1.0b. Recall that f,, = |M,|.

Theorem 1.0a. The torsion group 7 ,_(fy) is trivial if M, is geometrically
orientable.

Theorem 1.0b. The torsion group T ,_(fy) has the order 2 if M, is geo-
metrically nonorientable.

Proof of Theorem 1.0a. We shall apply Lemma 4.4 with a = M therein.
The critical points of f other than p, have indices at most n — 1. It follows
from Lemma 4.4 that H,_(f,, Z) is torsion-free. By hypotheses of Theorem
1.0a, M, is geometrically orientable so that p, is of linking type over Q by
Corollary 4.1. Hence the free index s = 0 by Lemma 6.1. It follows from
Theorem 6.1 with @ = M that H,_,(fy, Z) is torsion-free.

Thus Theorem 1.0a is true.

Proof of Theorem 1.0b. We have just seen that 7, _,( f ) Is trivial. Ac-
cording to Theorem 6.1, to prove Theorem 1.0b it then suffices to verify that
the free index s of the critical point p,, is 2. That this is the case is an im-
mediate consequence of Theorem 5.1 and the definition of s¥. One has merely
to recall that the (n — 1)-cycle y7-! is defined by (4.2) to infer from Theorem
5.1 that §¥ = 2.

That Theorem 1.0b is true follows now from Theorem 6.1 with &k = n.
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